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a b s t r a c t

Convolutional neural networks (CNNs) have been increasingly used in the computer-aided diagnosis
of Alzheimer’s Disease (AD). This study takes the advantage of the 2D-slice CNN fast computation and
ensemble approaches to develop a Monte Carlo Ensemble Neural Network (MCENN) by introducing
Monte Carlo sampling and an ensemble neural network in the integration with ResNet50. Our goals
are to improve the 2D-slice CNN performance and to design the MCENN model insensitive to image
resolution. Unlike traditional ensemble approaches with multiple base learners, our MCENN model
incorporates one neural network learner and generates a large number of possible classification
decisions via Monte Carlo sampling of feature importance within the combined slices. This can
overcome the main weakness of the lack of 3D brain anatomical information in 2D-slice CNNs and
develop a neural network to learn the 3D relevance of the features across multiple slices. Brain
images from Alzheimer’s Disease Neuroimaging Initiative (ADNI, 7199 scans), the Open Access Series
of Imaging Studies-3 (OASIS-3, 1992 scans), and a clinical sample (239 scans) are used to evaluate the
performance of the MCENN model for the classification of cognitively normal (CN), patients with mild
cognitive impairment (MCI) and AD. Our MCENN with a small number of slices and minimal image
processing (rigid transformation, intensity normalization, skull stripping) achieves the AD classification
accuracy of 90%, better than existing 2D-slice CNNs (accuracy: 63% ∼ 84%) and 3D CNNs (accuracy:
74% ∼ 88%). Furthermore, the MCENN is robust to be trained in the ADNI dataset and applied to the
OASIS-3 dataset and the clinical sample. Our experiments show that the AD classification accuracy of
the MCENN model is comparable when using high- and low-resolution brain images, suggesting the
insensitivity of the MCENN to image resolution. Hence, the MCENN does not require high-resolution
3D brain structural images and comprehensive image processing, which supports its potential use in
a clinical setting.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is clinically characterized by the
ppearance of a progressive decline in memory and cognition

∗ Correspondence to: National University of Singapore, 4 Engineering Drive
3, Block E4 04-08, 117583, Singapore.

E-mail address: bieqa@nus.edu.sg (A. Qiu).
1 Data used in preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation
of ADNI and/or provided data but did not participate in analysis or writing
of this report. A complete listing of ADNI investigators can be found at http:
//adni.loni.usc.edu.
ttps://doi.org/10.1016/j.neunet.2022.10.032
893-6080/© 2022 Elsevier Ltd. All rights reserved.
(Alzheimer’s Association, 2015). It is the most common form of
dementia and has an astounding impact at individual and societal
levels (Prince et al., 2015; Rizzi, Rosset, & Roriz-Cruz, 2014; Wimo
et al., 2017). Early stages of AD are windows of opportunity in
reducing the incidence and symptoms of AD and hence the early
diagnosis of AD can potentially mitigate disease impact (Ewers,
Sperling, Klunk, Weiner, & Hampel, 2011; Pellegrini et al., 2018;
Rathore, Habes, Iftikhar, Shacklett, & Davatzikos, 2017). Brain
morphology is recognized as a biological marker of the AD pro-
gression from preclinical to overt stages of AD (Frisoni, Fox, Jack,
Scheltens, & Thompson, 2010). Structural MRI has therefore been
incorporated into the clinical assessment of AD.

https://doi.org/10.1016/j.neunet.2022.10.032
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.10.032&domain=pdf
mailto:bieqa@nus.edu.sg
http://adni.loni.usc.edu
http://adni.loni.usc.edu
https://doi.org/10.1016/j.neunet.2022.10.032
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Deep learning methods have increasingly been used in the
omputer-aided diagnosis of AD due to their flexibility and ability
o learn brain image features that have the most discriminative
ower of AD diagnosis (e.g., Ansart et al., 2021; Jin et al., 2020;
anveer et al., 2020; Wen et al., 2020). Particularly, convolutional
eural network (CNN) on brain structural images shows its poten-
ial to distinguish normal aging and AD (see recent review in Wen
t al. (2020)). Most of the existing CNN studies are applied to
igh-resolution structural images of the brain Bäckström, Nazari,
u, and Jakola (2018), Basaia et al. (2019), He, Zhang, Ren, and
un (2016). Nevertheless, in a clinical setting, high-resolution
tructural MRI images may not be obtained due to limited clinical
cquisition time. Also, brain images vary in terms of image quality
nd acquisition protocols from one hospital to another (Bottani
t al., 2022). It remains unclear how well existing CNNs can be
pplied to the diagnosis of AD in the clinical setting.
In the past ten years, a substantial body of research mainly

mploys CNNs on 2D slices (Aderghal et al., 2018; Cheng &
iu, 2017; He et al., 2016), 3D patches, 3D regions of interest
ROIs) (Liu, Ji and Qiu, 2021), 3D whole-brain images (Huang,
hung, & Qiu, 2021; Wee et al., 2019), or volumetric features of
rain structural images (see review in Liu et al. (2018)). Most
f CNN studies on 2D slices take advantage of the existing CNN
rchitectures on natural images, such as ResNet (He et al., 2016),
nception (Cui et al., 2019), VGGNet (Nigri, Ziviani, Cappabianco,
ntunes, & Veloso, 2020; Qiu et al., 2018), AlexNet (Lee, Ellahi,
Choi, 2019; Liu, Li et al., 2021), GoogLeNet (Liu, Li et al., 2021;

arraf, DeSouza, Anderson, & Tofighi, 2016), and etc., where one
r a few of 2D slices of brain structural images are taken as
nputs of 2D-slice CNNs. Valliani and Soni (2017) demonstrated
he usefulness of the CNNs pre-trained on natural images in
he AD classification. ResNet performs better than VGGNet (Nigri
t al., 2020) and a baseline CNN with one convolutional layer and
wo fully connected layers (Valliani & Soni, 2017). The 2D-slice
NN approaches are computationally efficient and less dependent
n image resolution, increase the samples by the number of
lices per scan, and may only require minimal image process-
ng (Wen et al., 2020). But, the 2D-slice CNNs largely ignore the
act that the brain is a 3-dimensional object and hence have a
ow AD diagnosis accuracy. Also, the selection of slices is not
traightforward.
In contrast, 3D CNN approaches on whole-brain images can

ncorporate the 3-dimensional spatial relevance of the brain (e.g.
ickerson et al., 2001; Qiu et al., 2018; Salvatore et al., 2015;
alliani & Soni, 2017). In 3D CNN approaches, the dimensionality
f estimated parameters is high, more samples are therefore
equired, and the computational time can be intensive. This can
e partially solved while 3D patches or 3D ROIs are considered as
nputs of 3D CNNs. CNNs on 3D patches, similar to 2D-slice CNNs,
educe the computational burden, but the selection and size of
atches can be tricky (Qiu et al., 2018; Valliani & Soni, 2017). On
he other hand, CNNs on 3D ROIs incorporate prior knowledge
f brain regions that are well-known to be affected early in AD,
uch as the hippocampal and medial temporal ROIs (Dickerson
t al., 2001; Salvatore et al., 2015). The determination of 3D ROIs
s dependent on image acquisition and needs intensive image
rocessing, such as brain segmentation and registration. A recent
eview in Wen et al. (2020) implemented the CNNs on 2D slices,
D patches, and ROIs, as well as 3D whole-brain images, and
rovided the most comparable classification results among these
ethods. The 3D CNN approaches (whole-brain images, ROIs,
atches) achieved the AD classification accuracy of 74%∼88%
rom normal aging, while the 2D-slice CNN obtained the accuracy
f 79%.
Recently, the ABCD Neurocognitive Prediction Challenge (2019
BCD-NP-Challenge; Oxtoby et al., 2019) invited researchers to

15
submit machine learning methods for predicting fluid intelligence
from brain structural MRI. Most of the methods with top predic-
tion performance employed ensemble approaches. For instance,
Vang, Cao, and Xie (2019) incorporated a gradient boosting ma-
chine (GBM) into traditional 3D CNN, where GBM obtains a strong
predictor by ensembling many weak predictors via adding a new
estimator fitted to the residual of the model and true labels.
Several studies trained multiple machine learning models, such
as multiple regressors (Kao, Zhang, Goebel, Chen, & Manjunath,
2019) or multiple 3D ResNet (Guerdan et al., 2019), or different
machine learning models (Tamez-Pena, Orozco, Sosa, Valdes, &
Nezhadmoghadam, 2019), and ensembled their predictors via
voting, averaging, or stacking. Building multiple base learners
and assembling weak predictors to become a strong predictor is
common among these successful approaches. Ganaie and Tanveer
(2022) recently developed an ensemble of deep learning models
that can learn highly complicated patterns from MRI scans for
the detection of AD by utilizing diverse solutions. Nevertheless,
the number of weak predictors is limited to the number of base
learners and ensemble approaches. The more base learners are
built, the more costly the computation is. To avoid such is-
sues, a recent study proposed an ensemble deep random vector
functional link network that optimizes a single network and gen-
erates an ensemble via optimization at different levels of random
projections of the data (Ganaie & Tanveer, 2022). Moreover, an
intuitionistic fuzzy random vector functional link network aimed
to find a weighting scheme for auto-detection of outliers and
noise samples (Malik, Ganaie, Tanveer, Suganthan, & Initiative,
2022).

This study takes the advantage of the 2D-slice CNN fast com-
putation and the idea of ensemble approaches (Ganaie & Tanveer,
2022; Malik et al., 2022) to develop a Monte Carlo Ensemble Neu-
ral Network (MCENN) by introducing Monte Carlo sampling and
an ensemble neural network in the integration with ResNet50.
Our goals are to improve the 2D-slice CNN performance and to
design the MCENN model insensitive to image resolution. Hence,
the MCENN model first incorporates the existing architecture of
ResNet50 that shows the best performance on the AD classifi-
cation when compared to VGGNet (Nigri et al., 2020) and CNN
with a few convolutional layers (Valliani & Soni, 2017). Nev-
ertheless, ResNet50 cannot well characterize the 3-dimensional
spatial relevance of the brain. We adopt the concept of the
ensemble to recover 3-dimensional information from 2D slices
to improve the classification performance of ResNet50. Unlike
traditional ensemble approaches with multiple base learners, our
study develops one base neural network learner to generate a
large number of possible decisions via Monte Carlo sampling
of feature importance within the combined slices to boost clas-
sification performance. In this setting, our MCENN model can
overcome the main weakness of the lack of 3D brain anatomical
information in the 2D-slice CNNs and develop a neural network
to learn the 3D relevance of the features across multiple slices.
Moreover, the MCENN model only has one base learner and is
computationally efficient. Furthermore, our framework allows a
large sampling rate, and hence our classification performance is
stable based on the laws of large numbers. Furthermore, when
a large sampling rate of image slices is used, it is equivalent to
having low-resolution images in our MCENN model. Therefore,
we expect that our model will not be sensitive to brain image
resolution, which makes it feasible to be adopted in a clinical
setting.

In our experiments, brain images from Alzheimer’s Disease
Neuroimaging Initiative (ADNI, 7199 scans), the Open Access
Series of Imaging Studies-3 (OASIS-3, 1992 scans), and a clinical
sample (239 scans) are used to evaluate the performance of the

MCENN model for the classification of cognitively normal (CN),
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atients with mild cognitive impairment (MCI) and AD. Our ex-
eriments demonstrate the minimal number of 2D slices needed
n the MCENN model. The performance of our model is compared
ith the existing 2D-slice CNNs and 3D CNNs on brain images.
inally, this study designs experiments to illustrate whether our
odel is sensitive to image resolution.
Hence, this paper contributes to the following novelty:

• a large number of possible decisions is generated via Monte
Carlo sampling of feature importance among MRI 2D slices;

• one learner achieves learning the 3D relevance of the brain
anatomy via the interaction of the features of the 2D slices
randomly chosen by the MCENN model;

• the MCENN model performs better than existing 2D-slice
and 3D CNNs in the AD classification;

• the MCENN performance is not sensitive to the MRI image
resolution;

• a new deep learning framework for the AD classification is
clinically applicable.

. Methods

This section describes our MCENN model in the integration
ith ResNet50. Fig. 1 shows the overall architecture employed in
his study. This architecture is designed to achieve (1) the feature
xtraction of 2D slices; (2) the integration of 2D information; (3)
he generation of a large number of possible decisions.

.1. ResNet50

The MCENN model first adopts ResNet50 (He et al., 2016) to
xtract features from each 2D slice. ResNet50 is chosen because
t performs well in comparison with GoogLeNet and VGG (Nigri
t al., 2020). In particular, ResNet50 is a deep convolutional
eural network that is made of 16 ResBlocks (see Fig. 1b). Three
onvolutional layers are made up of one ResBlock in which two
onvolutional layers have filters with a kernel size of 1 × 1
nd one layer has filters with a kernel size of 3 × 3. One more
onvolutional layer is added in the input layer, one convolutional
ayer and one fully connected layer are added to the output
ayers of ResNet50, which is made up of the 50-layer architecture.
esNet50 is deep so that it can learn rich feature representations
or a wide range of images. Hence, our study applies it to all MRI
lices in the axial, coronal, and sagittal views of brain images and
ap each 2D slice to a feature vector with a length of 2048.

.2. Monte Carlo Ensemble Neural Network (MCENN)

The MCENN model is designed to combine the features of 2D
lices, obtain the distribution of possible decisions via one base
earner, and make a final decision based on this distribution.

Denote X = {X i(s, d)}ni=1 as a set of image features obtained
from ResNet50 for all n subjects. X i(s, d) represents the image
features of the ith subject that correspond to slice, s, and fea-
ure dimension, d. In this study, X i(s, d) is obtained from the
bove ResNet50 (see Fig. 1b), where s = 1, 2, . . . , 368, d =

, 2, . . . , 2048. The MCENN model first introduces two sampling
unctions, πs and πd, where πs is used to randomly sample 2D
lices with a sampling rate of rs and πd is used to randomly
ample the feature space at a sampling rate of rd. In particular,
s is designed such that the higher sampling frequency is for
he slices with a greater discriminative power of disease. Here,
he discriminative power of each slice is evaluated via ResNet50
sing training data. More detail is given in the implementation
ection. In contrast, the feature space is sampled via a uniform
istribution because the feature space includes a wide range of
eature attributes generated from ResNet50 on all slices.
16
Define a function f that maps the mth sampled features of the
th subject, X i, to a probability of disease. The MCENN model can
e written in the form of

(X i) =

M∑
m=1

ρmf
(
X i(πm

s , πm
d )

)
, (1)

where M is the total number of samples drawn via πs and πd
n X i. ρm is the weight for the mth sampled features, which is
sed to aggregate all possible decisions obtained from f . This
tudy designs a neural network to represent f so that it can
earn the interaction of the features across the sampled slices.
e exploit one fully connected (FC) layer neural network (the

implest neural network) and complicated neural networks, such
s DenseNet121 (Huang, Liu, Maaten, & Weinberger, 2017), VGG
Qiu et al., 2018), GoogLeNet (Liu, Li et al., 2021), and ResNet (He
t al., 2016) to explore the relationship among the slice features.
e exploit the simple one FC layer neural network due to its

omputational efficiency. On the other hand, DenseNet121 is
hose because (1) it can capture possible non-linear relations of
he features across 2D slices if any; (2) the accuracy of the classi-
ication of normal aging and AD using DenseNet (82.4%) is better
han VGG (51.1%), GoogLeNet (68.6%), and ResNet (70.4%). Hence,
e only employ DenseNet and demonstrate whether there is a
eed of the complexity for the neural networks in the following
xperiments (see Section of Results).

.3. Evaluation metrics

Three traditional metrics, including classification accuracy,
ensitivity, and specificity, are employed to quantify the classi-
ication performance. They are defined as

Accuracy =
TP + TN

TP + TN + FN + FP
, (2)

Sensitivity =
TP

TP + FN
, (3)

Specificity =
TN

TN + FP
, (4)

where TP, TN, FN, and FP denote the true positive, true nega-
tive, false negative, and false positive, respectively. In our study,
the positive class is ‘‘AD’’ and the negative class is ‘‘CN’’. The
sensitivity and specificity provide the proportion of correctly
identified samples for positive and negative classes, respectively.
However, these measures, including the classification accuracy,
are sensitive to the ratio of the number of subjects in the positive
and negative classes, and hence may provide inaccurate and
misleading information on the performance of a classifier on an
imbalanced dataset (López, Fernández, García, Palade, & Herrera,
2013). To overcome this issue and to take into consideration
the ratio of the number of subjects in the positive and negative
classes, this study uses geometric mean, defined as

Geometric Mean =
√
SEN × SPE . (5)

Geometric mean attempts to maximize the accuracy of each of
the two classes when the number of subjects in the positive
and negative classes is imbalanced (Barandela, Sánchez, García,
& Rangel, 2003).

Moreover, area under the receiver operating characteristic
curve (AUC) is also employed to measure the quality of the
model’s prediction irrespective of what classification threshold is
chosen. The AUC ranges in value from 0 to 1. A model whose pre-
dictions are 100% wrong has an AUC of 0; one whose predictions
are 100% correct has an AUC of 1.0.



C. Liu, F. Huang, A. Qiu et al. Neural Networks 159 (2023) 14–24

M
n
f

Fig. 1. The architecture of the Monte Carlo Ensemble Neural Network (MCENN) in the integration with ResNet50. Panel (a) shows the overall architecture of the
CENN model. Panel (b) illustrates the detailed architecture of ResNet50 that is adopted from He et al. (2016). Panel (c) illustrates the flowchart of the MC sampler.
represents the number of subjects. The total number of 2D slices from the axial, coronal, and sagittal views is 368 in this study. ResNet extracts 2048 features

rom each slice. rs and rd denote the sampling rates in the dimensions of 2D slices and features, respectively.
2.4. Implementation

The framework (see Fig. 1) is implemented in Python 3.7 and
TensorFlow 1.13.1 library. All experiments are run using NIVIDIA
Tesla V100-SXM2 GPU with 32 GB RAM and Intel Xeon Gold
5118 CPU with 2.30 GHz. This study divides the ADNI cohort into
two datasets (see Fig. 2). All scans from one subject are assigned
to one of the two datasets to avoid data leakage. In general,
a two-step procedure is used to train our framework, one for
ResNet50 and the other for the MCENN model. Nevertheless, the
detailed description of training and testing data is provided for
each experiment in Section 4.

ResNet50 training. This study first modifies the last fully con-
nected layer of ResNet50 for a three-class classification problem
(CN, MCI, AD). The slice of interest and the slice before and
after it form an RGB image as the input of ResNet50. ResNet50
is trained in two ways (fully trained, transfer learning) based
on the first ADNI dataset. First, stochastic gradient descent is
employed to train the full model of ResNet50. Second, we take
advantage of the ResNet50 model pre-trained on more than a
17
million images from the ImageNet database and fine-tune the
last two convolutional layers and the last fully connected layer
of ResNet50. Both training approaches employ a batch size of 64,
an initial learning rate of 0.01, and 55 epochs. The learning rate
is gradually decayed to 0.005, 0.001, 0.0005, 0.0001 at epoch of
19, 30, 44, 53.

Moreover, the sampling distribution of slices is defined as their
classification accuracies obtained from ResNet50 based on the
first ADNI dataset.

MCENN training. The second ADNI dataset is employed to train
and evaluate the performance of the MCENN model. 50% of
subjects are used in the training and 50% are used in the eval-
uation. Each experiment needs to first determine the sampling
rates, rs and rd, and the total number of samples, M . Both the
neural network with one FC layer and DenseNet121 for a two-
class classification problem are trained via stochastic gradient
descent. We maximize the GM metric to balance the sensi-
tivity and specificity of the neural network. The training pa-
rameters are defined as follows: a batch size is 32; learning
rate values are [0.01, 0.005, 0.001, 0.0005, 0.0001] at epoch of
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Fig. 2. The ADNI data splitting for the ResNet and MCENN training and testing.
0, 19, 30, 44, 53], and the number of epochs is 80. Since age is
n important factor for the diagnosis of AD, age with the image
eatures ( 368rs ×

2048
rd

) is incorporated into the feature space for the
neural network.

Hyperparameters of the MCENN model. As mentioned above,
several key hyperparameters, including rs and rd, and the total
number of samples, M , determine the MCENN model. Our exper-
iments below will discuss how to choose these parameters (see
Section 4).

Code Availability. The code and demo are available at https:
//github.com/bieqa/Monte-Carlo-Ensemble-Neural-Network.

3. MRI data and analysis

ADNI and OASIS-3. Data used in this study were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(https://adni.loni.usc.edu) and the Open Access Series Of Imaging
Studies-3 (OASIS-3; http://oasis-brains.org). Institutional review
boards approved study procedures across participating institu-
tions.

This study includes the ADNI cohort, including the ADNI-1
(n = 811), ADNI-GO(n = 188) and ADNI-2(n = 1019) studies.
The number of visits per subject varied from 1 to 12. At each
visit, subjects were diagnosed as cognitively normal (CN), mild
cognitive impairment(MCI), or Alzheimer’s disease(AD) based on
the criteria described in the ADNI protocol. The total numbers
of scans in individual diagnostic groups are 2190 for CN (546
subjects), 3393 for MCI (910 subjects), and 1616 for AD (592 sub-
jects), respectively. This study excludes 648 scans of 115 subjects
whose diagnosis was converted back from MCI to CN across time.

In the OASIS-3 dataset, the number of visits per subject varied
from 1 to 7. There were 1531 scans for CN (712 subjects) and 335
scans for AD (274 subjects). Table 1 provides the demographic
and clinical information of the subjects in the ADNI and OASIS-3
cohorts, including age, gender, mini-mental state exam (MMSE),
clinical dementia rating (CDR).

Both the ADNI and OASIS-3 cohorts acquired structural T1-
weighted MRI scans using either 1.5T or 3T scanners at different
study sites. Detailed acquisition information is given at https:
//adni.loni.usc.edu for the ADNI and https://www.oasis-brains.org
for the OASIS-3. All T1-weighted MRI scans in these two study are
in the resolution of 1 mm × 1 mm × 1.2/1.25 mm.

Clinical Sample. This study also includes a clinical sample re-
cruited from the stroke service and Memory clinics in Singa-
pore (Thong et al., 2014, 2013). This study was approved by the
Domain-Specific Review Board (DSRB) of the National Healthcare
Group. The recruitment criteria were similar to those used in the
ADNI cohort. This study includes a cross-sectional dataset with
104 NC, 85 MCI, and 50 AD. Table 1 lists the demographic and
clinical information of these subjects.
18
Table 1
Demographic and clinical information of the ADNI, OASIS-3, and clinical samples.

ADNI

CN MCI AD

Number of subjects∗ 546 910 592
Number of MRI scans 2190 3393 1616
Female/Male 1095/1095 1376/2017 700/916
Age (mean ± SD) 76.0 ± 6.2 74.3 ± 7.7 76.0 ± 7.4
MMSE (mean ± SD) 29.0 ± 1.2 27.4 ± 2.3 21.9 ± 4.3
CDR sum of box (mean ± SD) 0.1 ± 0.3 1.6 ± 1.1 5.4 ± 2.6

OASIS-3

Number of subjects∗ 712 102 274
Number of MRI scans 1531 126 335
Female/Male 923/608 58/68 147/188
Age (mean ± SD) 69.0 ± 9.3 75.0 ± 8.4 76.9 ± 8.3
MMSE (mean ± SD) 29.0 ± 1.4 27.9 ± 2.7 24.0 ± 5.1
CDR sum of box (mean ± SD) 0.1 ± 0.5 1.1 ± 1.4 4.2 ± 3.4

Clinical sample

Number of subjects 104 85 50
Number of MRI scans 104 85 50
Female/Male 40/64 49/36 33/17
Age (mean ± SD) 66.6 ± 4.7 74.1 ± 6.4 76.7 ± 7.6
MMSE (mean ± SD) 28.0 ± 0.9 20.8 ± 3.6 16.3 ± 4.4
CDR sum of box (mean ± SD) 0.0 ± 0.0 1.1 ± 0.9 6.8 ± 2.8

All the subjects in this clinical sample underwent MRI scans
that were performed on a 3T Siemens Magnetom Trio Tim scan-
ner using a 32-channel head coil at the Clinical Imaging Research
Centre of the National University of Singapore. The image pro-
tocol was T1-weighted Magnetization Prepared Rapid Gradient
Recalled Echo (MPRAGE; 192 slices, 1 mm × 1 mm×1 mm, field
of view = 256×256 mm, matrix = 256 × 256, repetition time =

2300 ms, echo time = 1.9 ms, inversion time = 900 ms, flip angle
= 9◦).

Structural MRI Analysis. In this study, all structural images are
minimally processed via bias field correction, rigid transforma-
tion (rotation and translation), intensity normalization, and skull
stripping. First, non-parametric non-uniform intensity normal-
ization (N3) is used to correct for intensity non-uniformity in
structural T1-weighted MRI images (Sled, Zijdenbos, & Evans,
1998). Second, each image is registered to the MNI space via lin-
ear transformation found using FLIRT (Jenkinson & Smith, 2001).
Third, image intensity is re-scaled such that the mean intensity
of the white matter is rescaled to 110. Finally, the watershed
algorithm in Ségonne et al. (2004) is used to remove the brain
skull.

In this study, 112 axial, 128 coronal, and 128 sagittal slices are
extracted from each structural image. Each slice is zero padded to
be a size of 192 at the boundary. These slices are used as inputs
in our MCENN model.

https://github.com/bieqa/Monte-Carlo-Ensemble-Neural-Network
https://github.com/bieqa/Monte-Carlo-Ensemble-Neural-Network
https://github.com/bieqa/Monte-Carlo-Ensemble-Neural-Network
https://adni.loni.usc.edu
http://oasis-brains.org
https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://adni.loni.usc.edu
https://www.oasis-brains.org
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Table 2
Effects of random feature sampling (rd) on the MCENN performance of the control and Alzheimer’s disease classification.
rd Accuracy (%) Sensitivity (%) Specificity (%) Geometric mean (%) Area under curve (%)

Neural network with one fully connected layer

No sampling 87.6 ± 1.1 83.3 ± 1.7 92.1 ± 2.3 87.6 ± 1.1 89.4 ± 1.1
2 87.8 ± 0.5 83.5 ± 1.4 92.5 ± 0.8 87.8 ± 0.5 89.2 ± 0.1
4 88.2 ± 0.2 83.1 ± 0.6 93.7 ± 0.5 88.2 ± 0.2 89.5 ± 0.1
8 88.2 ± 0.3 83.5 ± 1.3 93.2 ± 1.2 88.2 ± 0.3 91.7 ± 0.1
16 88.2 ± 0.4 82.1 ± 1.0 94.8 ± 1.0 88.2 ± 0.4 90.9 ± 0.1
32 88.7 ± 0.5 81.8 ± 0.8 95.9 ± 0.9 88.6 ± 0.5 92.6 ± 0.1

DenseNet121

No sampling 82.4 ± 3.0 73.3 ± 6.0 92.2 ± 3.7 82.1 ± 3.3 85.2 ± 3.2
2 85.7 ± 0.6 74.7 ± 1.5 97.5 ± 0.5 85.3 ± 0.7 91.5 ± 0.6
4 71.1 ± 10.2 44.3 ± 20.0 99.7 ± 0.4 64.1 ± 17.2 82.3 ± 0.5
8 88.1 ± 0.5 82.8 ± 2.4 93.8 ± 2.1 88.1 ± 0.5 82.6 ± 0.6
16 75.0 ± 5.6 52.3 ± 11.1 99.3 ± 0.5 71.6 ± 7.7 90.0 ± 0.2
32 80.7 ± 7.9 64.3 ± 16.4 98.1 ± 1.4 78.6 ± 10.8 89.6 ± 0.2
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4. Results

This section designs experiments to explore how our frame-
ork works. The classifier of CN vs AD is employed to demon-
trate the use of the MCENN models in the following aspects:
1) effects of random feature and slice sampling in the MCENN
odel; (2) the selection of neural networks in the MCENN model

the neural network with one FC layer and DenseNet121). Our re-
ults report the computation time for each experiment. Moreover,
ur model compares with existing 2D-slice and 3D CNN methods
ased on the AD classification performance. Furthermore, we
xamine the robustness of the MCENN model using the ADNI and
ASIS-3 datasets as well as a clinical sample. Finally, effects of
mage resolution on the performance of the MCENN model are
nvestigated to demonstrate its potential use in a clinical setting.

.1. Effects of random feature sampling

The first experiment is designed to examine effects of random
eature sampling. For this, the full ResNet50 model is trained us-
ng the first ADNI dataset for a three-class classification problem
the total number of scans: 2583; CN:918; MCI, 1160; AD:505).
he second ADNI dataset (the total number of scans: 2018;
N:936; AD:1082) is used to train and evaluate the MCENNmodel
or the classification of CN and AD. As mentioned before, all
he scans from the same subject are assigned to one dataset to
void data leakage. In this experiment, we set M as 100, ρm as
qual weight in Eq. (1), and no slice sampling (i.e., rs = 1). The

MCENN model is optimized based on the procedure described in
Section 2.4. At the mth trial, the MCENN model first uniformly
samples 368 ×

2048
rd

features from each scan and then computes
the classification probability from the neural network. This is re-
peated 100 trials. The final classification decision for this MRI scan
is made by averaging these 100 classification probabilities. To
evaluate the performance of the MCENN model, it is trained using
50% of the second ADNI dataset and evaluated its performance
using the rest of 50%. This process is repeated 5 times.

Table 2 lists the mean and standard deviation of the classifica-
tion results among the 5 repetitions for rd ∈ {2, 4, 8, 16, 32}. The
eural network with one FC layer shows that the classification
ccuracy and geometric mean for all rd ∈ {2, 4, 8, 16, 32} are
ot statistically different from those without the feature sampling
Student t−tests: t < 1.78, p > 0.11). Nevertheless, the results
rom DenseNet121 show that the classification accuracy (Student
−test: t = 6.63, p < 0.001) and geometric mean at rd = 8
Student t−test: t = 5.84, p < 0.001) are statistically larger
han those without the feature sampling. When rd ∈ {4, 16},
he classification accuracy and geometric mean obtained from
enseNet121 are statistically smaller than those without the
19
eature sampling (Student t−tests: t < −2.33, p < 0.04). The
ame pattern is observed in AUC. As listed in Table 2, the standard
eviation of the classification accuracy, sensitivity, specificity,
eometric mean, and AUC from DenseNet121 is relatively larger
han that from the neural network with one FC layer.

.2. Effects of random slice sampling

In this section, the experiments are designed to examine the
ffects of random slice sampling without feature sampling. In-
tead of uniform sampling, the slice sampling is designed based
n the distribution shown in Fig. 3. Here, the sampling distribu-
ion is computed as the AD probability obtained from ResNet50
hen a slice is used to distinguish CN and AD. Clearly, the slices
ncompassing the hippocampus in all three views give the high-
st probability (see Fig. 3). The experiments in this section are
etup in the same way as those described in the previous section.
Table 3 lists the mean and standard deviation of the classifica-

ion results among the 5 repetitions for rs ∈ {2, 4, 8, 16, 32}. The
neural network with one FC layer shows that the classification
accuracy, geometric mean, and AUC for rs = {2, 4, 8} are signif-
icantly better than those without the slice sampling (Student’s
t−tests: t > 2.47, p < 0.04). The highest accuracy occurs
when rs = 4, while the highest AUC occurs when rs = 8. This
finding suggests the importance of introducing a large number of
possible decisions via Monte Carlo sampling of slices to make a
final classification decision.

Similarly, DenseNet121 also shows that when rs = 8 the clas-
sification accuracy and geometric mean are significantly better
than those without the slice sampling (Student’s t−tests: t >

2.60, p < 0.03).

4.3. Effects of neural network with one FC layer and DenseNet121 in
the MCENN model

Both Tables 2 and 3 show that the performance of the neu-
ral network with one FC layer is statistically better than that
of DenseNet121 at a given rd or rs (Student’s t-tests: all p <

0.05). This suggests that the non-linear relationship of image
features across slices may not need to be learned through a
network with a great depth, such as DenseNet121. This is partly
because ResNet50 learns features from each slice through many
non-linear operations. Moreover, the standard deviation of the
classification accuracy obtained from DenseNet121 is larger than
that obtained from the neural network with one FC layer. This
indicates that DenseNet121 performance is not stable and may
need more samples to train.

Fig. 4 shows the computational time per epoch for the neural
network with one FC layer and DenseNet121 that are used in
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Fig. 3. The sampling distribution of the MRI slices. The panels from left to right respectively show the sampling probability for axial, coronal, and sagittal slices.
elected MRI slices illustrate the brain anatomy contributing to the discrimination between normal aging and Alzheimer’s disease.
Table 3
Effects of random slice sampling (rs) on the MCENN performance of the normal aging and Alzheimer’s disease classification.
rs Accuracy (%) Sensitivity (%) Specificity (%) Geometric mean (%) Area under curve (%)

Neural network with one fully connected layer

No sampling 87.6 ± 1.1 83.3 ± 1.7 92.1 ± 2.3 87.6 ± 1.1 89.4 ± 1.1
2 89.3 ± 0.7 84.3 ± 3.1 94.7 ± 2.6 89.3 ± 0.8 91.3 ± 0.9
4 90.0 ± 0.7 83.5 ± 1.4 96.9 ± 0.5 89.9 ± 0.7 91.4 ± 0.4
8 89.8 ± 0.5 83.0 ± 1.5 97.0 ± 1.4 89.7 ± 0.6 92.5 ± 0.7
16 89.0 ± 1.0 81.7 ± 2.8 96.8 ± 1.6 88.9 ± 1.0 92.3 ± 1.7
32 87.7 ± 1.5 77.5 ± 3.4 98.5 ± 0.6 87.4 ± 1.8 92.4 ± 1.0

DenseNet121

No sampling 82.4 ± 3.0 73.3 ± 6.0 92.2 ± 3.7 82.1 ± 3.3 85.2 ± 3.2
2 82.8 ± 5.0 70.9 ± 9.1 95.5 ± 2.5 82.1 ± 5.6 87.7 ± 0.6
4 72.2 ± 14.7 50.5 ± 28.8 95.4 ± 6.8 61.2 ± 32.1 66.5 ± 1.9
8 87.4 ± 1.9 78.5 ± 4.0 96.8 ± 0.6 87.1 ± 2.1 83.7 ± 0.8
16 77.9 ± 14.4 59.5 ± 27.1 97.4 ± 1.3 72.5 ± 24.0 89.1 ± 1.4
32 79.7 ± 14.6 65.7 ± 24.6 94.7 ± 4.5 77.1 ± 19.2 88.0 ± 1.8
Fig. 4. Computational time per epoch for the neural network with one FC layer and DenseNet121 at different feature (left panel) and slice (right panel) sampling
rates. The one FC layer performs faster than DenseNet121.
the experiments listed in Tables 2 and 3. At the same sampling
rate (either feature (left panel) or slice (right panel)), the neural
network with one FC layer is computationally more efficient than
DenseNet121. Moreover, our MCENN with one FC layer was
comparable to the 2D ResNet in terms of the computation time.
Hence, we employ the MCENN with one FC layer in the following
experiments.
20
4.4. The MCENN performance

The performance of the MCENN with one FC layer is assessed
when the slice sampling rate is 4 or 8 without feature sampling
or the feature sampling rate of 4. Again, the setting of the ex-
periments is the same as those in the above sections. Table 4
shows that the MCENN can classify the CN and AD subjects at the
accuracy of 88.1%∼90.0% and at the AUC of 91.4%∼93.8%. There
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Table 4
The performance of the MCENN with one FC layer at the slice sampling rate of rs = 4, 8 and feature sampling rate of rd = 1, 4.
Neural network with one fully connected layer

rs rd Accuracy (%) Sensitivity (%) Specificity (%) Geometric mean (%) Area under curve (%)

4 No sampling 90.0 ± 0.7 83.5 ± 1.4 96.9 ± 0.5 89.9 ± 0.7 91.4 ± 0.4
8 No sampling 89.8 ± 0.5 83.0 ± 1.5 97.0 ± 1.4 89.7 ± 0.6 92.5 ± 0.7
4 4 89.5 ± 0.4 81.8 ± 1.0 97.6 ± 0.2 89.4 ± 0.5 93.8 ± 0.1
8 4 88.1 ± 0.9 78.6 ± 2.0 98.3 ± 0.4 87.9 ± 1.0 93.2 ± 0.5
Fig. 5. The normal aging and Alzheimer’s disease classification accuracy using the fully trained ResNet50 (left panel) and the pre-trained ResNet50 (right panel). The
ed line represents the mean classification accuracy among the 5 trials and the blue bar indicates the respective standard deviation. This figure suggests that the
ully trained ResNet50 model performs better than the pre-trained ResNet50 model.
t
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t
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t
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s no statistical difference in the MCENN performance when the
lice sampling rate is 4 or 8 without the feature sampling or the
eature sampling rate of 4. Our results suggest that 46 (368/8)
lices of the MRI scan can produce the classification accuracy
omparable to that when all 368 slices are used. This indicates
he feasibility of adopting this setting for clinical brain scans.

Without adding age as one of features, the MCENN with one
C layer can also achieve the AUC of 93.2% ± 0.5% when the
lice sampling rate is 8 without the feature sampling. This is
omparable to that with age as one of features in the MCENN
odel (AUC: 92.5% ± 0.7%).

.5. Comparisons with 2D-slice and 3D CNNs

In this study, our MCENN model is compared with the existing
D-slice CNNs, 3D-patch, 3D-ROI, and 3D whole-brain CNNs on
he classification of CN and AD using the ADNI dataset. We choose
hese existing methods as they have been extensively reviewed
nd evaluated fairly in the recent review (Wen et al., 2020).
For the 2D-slice CNNs, the ResNet50 is fully trained using

he first ADNI dataset for the classification of CN and AD (fully
rained ResNet50). In addition, the ResNet50 that is pre-trained
sing the ImageNet database and its last two convolutional layers
nd the last FC layer are fine-tuned using the first ADNI dataset
pre-trained ResNet50). Both the fully trained and pre-trained
esNet50 are fine-tuned using 50% of the second ADNI dataset
nd evaluated using another 50% of the second ADNI dataset.
his process is repeated 5 times. Fig. 5 illustrates the mean and
tandard deviation of the classification accuracy of each slice.
able 5 lists the highest classification accuracies of the fully
rained ResNet50 and pre-trained ResNet50 among all 368 slices.
tudent’s t-test suggests that our MCENN model performs signifi-
antly better than the best classification results obtained from the
ully trained ResNet50 (Student’s t−test: t = 9.95, p < 0.001)
nd the pre-trained ResNet50 (Student’s t−test: t = 6.35, p <

.001).
For the 3D CNNs, we directly borrow the results from Wen

t al. (2020) for the fair comparisons as the 3D CNN models have
een well learned. Here, the 3D-patch CNN consists of 4 convolu-
ional blocks and 3 FC layers. It is trained in three ways. The first
ne is that 36 patches of the size of 50×50 mm3 from each image
21
Table 5
Comparisons of the MCENN model with the 2D-slice and 3D CNNs in the
classification of normal aging and AD of the ADNI dataset. The results for 3D
CNN models are borrowed from Table 6 in Wen et al. (2020).
Model Accuracy Accuracy of 5 repetitions

(mean ± SD) of 5 repetitions

MCENN 0.90 ± 0.01 0.89, 0.90, 0.90, 0.91, 0.90

2D-slice CNNs

Fully trained ResNet50 0.84 ± 0.01 0.83, 0.84, 0.84 0.84, 0.86
Pre-trained ResNet50 0.63 ± 0.10 0.54, 0.52, 0.72, 0.69, 0.69

3D CNNs

3D-patch single-CNN 0.74 ± 0.08 0.75, 0.84, 0.78, 0.75, 0.59
3D-patch multi-CNN 0.81 ± 0.03 0.82, 0.84, 0.83, 0.77, 0.79
3D-ROI CNN 0.88 ± 0.03 0.84, 0.89, 0.90, 0.89, 0.85
3D whole-brain CNN 0.82 ± 0.05 0.74, 0.90, 0.83, 0.77, 0.83

are fitted into one single 3D-patch CNN (3D-patch single-CNN).
The second is that one 3D-patch CNN is for one patch and there
are a total 36 CNN models (3D-patch multi-CNN). For the 3D-ROI
CNNmodel, only the ROI enclosing the hippocampus with the size
of 50× 50 mm3 is fitted to the 3D-patch CNN. Last but not least,
he 3D whole-brain CNN consists of 5 convolutional blocks and 3
C layers. Table 5 lists the classification accuracies for all 5 times
f the 3D-patch single-CNN, 3D-patch multi-CNN, 3D-ROI CNN,
nd 3D whole-brain CNN. Student’s t− tests demonstrate that

the MCENN model performs better than the 3D-patch single-CNN
(Student’s t−test: t = 3.81, p = 0.005), 3D-patch multi-CNN
t = 6.71, p < 0.001), and 3D whole-brain CNN (Student’s
−test: t = 3.08, p = 0.015) and is comparable to the 3D-ROI
NN (Student’s t−test: t = 2.08, p = 0.071).
The MCENN model of the CN and AD classifier is then applied

o distinguish stable MCI (n = 272) and MCI converted to AD
n = 240) in the second ADNI dataset. Table 6 shows that the
CENN model achieves the accuracy of 77% ± 5%, better than
D whole-brain CNN and 3D-patch multi-CNN models (Student’s
−test: t > 4.38, p < 0.037) and equivalently to 3D-ROI CNN
Student’s t−test: t = 1.11, p = 0.328).
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Table 6
Comparisons of the MCENN model with the 3D CNNs in the classification of
stable MCI and MCI converted to AD of the ADNI dataset. The results for 3D
CNN models are borrowed from Table 6 in Wen et al. (2020).
Model Accuracy Accuracy

(mean ± SD) of 5 repetitions

MCENN 0.77 ± 0.05 0.80, 0.75, 0.70, 0.83, 0.78

3D CNNs

3D-patch multi-CNN 0.70 ± 0.04 0.71,0.66, 0.66,0.71, 0.75
3D-ROI CNN 0.74 ± 0.02 0.75,0.72, 0.76,0.75, 0.75
3D whole-brain CNN 0.69 ± 0.04 0.68,0.71, 0.64,0.73, 0.67

4.6. Robustness of the MCENN model

The robustness of the MCENN with one FC layer is evalu-
ted via the ADNI, OASIS-3, and clinical datasets. The full model
f ResNet50 is trained using the first ADNI dataset (the total
umber of scans: 2583; CN:918; MCI:1160; AD:505) for a three-
lass classification problem. Then, the second ADNI dataset (the
otal number of scans: 3968; CN:936; MCI:1950; AD:1082) is
mployed to train and evaluate the MCENN with one FC layer for
wo-class classification problems in the setting of M = 100, rs =

, without the feature sampling. The MCENN model is trained
sing 50% of the second ADNI sample and evaluated via 50%
f the second ADNI dataset. This is repeated 5 times. Table 7
ists the mean and standard deviation of the accuracy, sensitivity,
pecificity, geometric mean, and AUC for the two-class classifiers
etween CN and AD, CN and MCI, and MCI and AD for the ADNI
ataset.
We employ transfer learning to examine the robustness of

he MCENN with one FC layer. In this experiment, the MCENN
ith one FC layer is trained using the ADNI dataset. Its FC layer

s fine-tuned using the first 50% of the OASIS-3 dataset, and
valuated using the second 50% of the OASIS-3 dataset. We repeat
his experiment 5 times. Table 7 lists the accuracy, sensitivity,
pecificity, geometric mean, and AUC of the two-class classifiers
etween CN and AD, between CN and MCI, and between MCI
nd AD for the OASIS-3 dataset. The classification accuracy rates
etween CN and AD (Student’s t−test: t = 4.41, p = 0.002) and
etween MCI and AD (Student’s t−test: t = 6.43, p < 0.001) on
he OASIS-3 dataset are lower than those on the ADNI dataset.
his is partly because of the smaller sample sizes of MCI and AD
atients and relatively better MMSE and CDR sum of box scores
n the AD patients of the OASIS-3 dataset in comparison with
hose in the ADNI dataset (see Table 1). The classification accuracy
etween CN and MCI of the OASIS-3 dataset is slightly better
han that of the ADNI dataset (Student’s t−test: t = −3.10, p =

.015) mainly because of younger CN in the OASIS-3 dataset (see
able 1).
The same transfer learning approach is applied to the clini-

al sample. Table 7 lists the classification accuracy, sensitivity,
pecificity, geometric mean, and AUC of the two-class classifiers
etween CN and AD, between CN and MCI, and between MCI and
D for the clinical sample. The ADNI and clinical sample show
he comparable classification accuracy of between CN and AD
Student’s t− test: t = 1.41, p = 0.109) and between MCI and
D (Student’s t− test: t = 0.15, p = 0.444). But, the clinical
ample shows better classification accuracy between CN and MCI
Student’s t− test: t = 2.73, p = 0.021), which may be due to
ower scores of MMSE and CDR sum of box in the clinical sample
see Table 1).

Overall, this experiment demonstrates that the MCENN with
ne FC layer trained using the ADNI dataset is generalizable to
he OASIS-3 and clinical samples. Nevertheless, the classification
erformance may depend on the clinical characteristics of the
amples.
22
.7. Simulation on clinical data with various image resolutions

This experiment aims to examine whether the performance of
he MCENN with one FC layer is influenced by image resolution.
or this, we downsample the clinical sample by factors of 2,4
nd generate two datasets with the image resolution of 2 mm ×

mm × 2 mm and 4 mm × 4 mm × 4 mm, respectively.
The MCENN with one FC layer is trained using the ADNI

ataset. The last FC layer of the MCENN model was fine-tuned
sing 50% of the clinical dataset with a specific image resolution
1 mm × 1 mm × 1 mm, or 2 mm × 2 mm × 2 mm, or 4 mm ×

mm × 4 mm). The MCENN model is evaluated using the other
0% of the data. This experiment is repeated 5 times. Table 8
ists the mean and standard deviation of the accuracy, sensitivity,
pecificity, geometric mean, and AUC for the two-class classifiers
etween CN and AD, between CN and MCI, and between MCI and
D at each image resolution. The images of 2 mm×2 mm×2 mm
nd 4 mm × 4 mm × 4 mm show the equivalent classification
ccuracy for all three classifiers when compared to the images of
mm× 1 mm× 1 mm (Student’s t− tests: t < 0.90, p > 0.204).
ur results suggest that the performance of the MCENN model is
ot sensitive to the image resolution.

. Discussion

This study develops the MCENN model in the integration of
esNet50 for the diagnosis of AD. Our study demonstrates the im-
ortance of random slice sampling to generate possible decisions
or improving the classification performance. The MCENN model
nly requires the minimal processing of structural brain images
rigid transformation, intensity normalization, and brain skull
tripping). Moreover, our experiments show that the MCENN
odel only needs a small number of slices for the AD diagnosis.
urthermore, the computational cost of the MCENN model with
ne FC layer takes a few seconds per epoch. Our results also
uggest that the performance of MCENN model is not sensitive
o image resolution.

A recent review (Wen et al., 2020) implemented the existing
NN models, such as CNN on 2D slices, 3D patches/regions of
nterest (ROIs), or 3D images to overcome the variations due to
articipant selection, image processing, sample size, or valida-
ion procedure across studies. It provided the most comparable
lassification results across the existing CNN models on the ADNI
ataset in the literature. It demonstrated that 3D CNN approaches
3D images, 3D-ROI, 3D-patch) achieved the best performance
or the classifier between CN and AD (accuracy: 74%∼88%). Our
xperiments show that even with a small number of slices, the
CENN model can perform better than most of the existing 2D
r 3D CNNs reported in Wen et al. (2020). The performance of
he MCENN model is comparable with that of the 3D CNN on the
OI encompassing the hippocampus. This may suggest that intro-
ucing prior knowledge of the AD-related image markers into the
CENN model could further improve the MCENN performance.
Our experiments evaluate the robustness of the MCENN model

y applying it to the OASIS-3 dataset and a clinical sample while
he MCENN model is trained using the ADNI dataset. In general,
ransfer learning of the MCENN model provides the comparable
D classification in both the OASIS-3 dataset and the clinical sam-
le. Moreover, the CN vs AD classification accuracy of the OASIS-3
ataset obtained by the MCENN is better than that obtained from
he 3D-ROI CNN, 3D-patch multi-CNN model, and 3D whole-brain
NN (accuracy: 64%∼67%, Table 6 in Wen et al. (2020)). Similar to
he claim in Wen et al. (2020), our study shows that the classifica-
ion performance is dependent on clinical characteristics. When
linical diagnosis is different from one dataset to another due to
ractitioner’s experience and/or diagnostic tools, transfer learning
an play a role of mapping the diagnosis across the two datasets.
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Table 7
Robustness of the MCENN with one FC layer in the ADNI and OASIS-3 datasets as well as the clinical sample.

Accuracy (%) Sensitivity (%) Specificity (%) Geometric mean (%) Area under curve (%)

ADNI

CN vs. AD 90.0 ± 0.7 83.5 ± 1.4 96.9 ± 0.5 89.9 ± 0.7 91.4 ± 0.4
CN vs. MCI 68.7 ± 0.6 71.5 ± 3.4 63.3 ± 5.6 67.1 ± 1.5 69.1 ± 2.0
MCI vs. AD 73.5 ± 1.5 69.5 ± 5.8 75.7 ± 5.2 72.4 ± 1.0 77.8 ± 0.2

OASIS-3

CN vs. AD 82.6 ± 3.3 74.3 ± 6.3 84.4 ± 5.3 79.0 ± 1.3 84.4 ± 1.2
CN vs. MCI 73.6 ± 3.1 54.3 ± 5.6 75.1 ± 3.6 63.7 ± 2.6 67.2 ± 2.3
MCI vs. AD 58.6 ± 4.4 54.1 ± 8.7 70.5 ± 8.0 61.2 ± 2.4 62.9 ± 3.8

Clinical sample

CN vs. AD 92.2 ± 0.8 84.8 ± 3.0 95.8 ± 0.8 90.1 ± 1.4 96.7 ± 1.3
CN vs. MCI 81.5 ± 2.9 83.8 ± 7.3 79.6 ± 10.2 81.2 ± 2.6 87.4 ± 6.1
MCI vs. AD 74.0 ± 1.5 67.2 ± 5.3 78.1 ± 4.9 72.3 ± 1.3 81.4 ± 3.4
Table 8
Effects of the image resolution on the performance of the MCENN with one FC layer.

Accuracy (%) Sensitivity (%) Specificity (%) Geometric mean (%) Area under curve (%)

Resolution of 1 mm × 1 mm × 1 mm, image size of 192 × 192 × 192

CN vs. AD 92.2 ± 0.8 84.8 ± 3.0 95.8 ± 0.8 90.1 ± 1.4 96.7 ± 1.3
CN vs. MCI 81.5 ± 2.9 83.8 ± 7.3 79.6 ± 10.2 81.2 ± 2.6 87.4 ± 6.1
MCI vs. AD 74.0 ± 1.5 67.2 ± 5.3 78.1 ± 4.9 72.3 ± 1.3 81.4 ± 3.4

Resolution of 2 mm × 2 mm × 2 mm, image size of 96 × 96 × 96

CN vs. AD 94.5 ± 1.5 91.2 ± 7.8 96.2 ± 2.7 93.5 ± 3.0 95.8 ± 0.5
CN vs. MCI 81.9 ± 5.0 87.1 ± 5.6 77.7 ± 12.9 81.8 ± 4.6 85.3 ± 3.8
MCI vs. AD 74.0 ± 2.2 73.6 ± 13.0 74.3 ± 11.2 72.9 ± 1.2 79.4 ± 5.1

Resolution of 4 mm × 4 mm × 4 mm, image size of 48 × 48 × 48

CN vs. AD 93.2 ± 2.1 95.2 ± 3.0 92.3 ± 4.4 93.7 ± 1.0 98.0 ± 0.8
CN vs. MCI 76.4 ± 2.1 80.0 ± 8.6 73.5 ± 9.2 76.2 ± 2.0 82.3 ± 4.7
MCI vs. AD 72.5 ± 2.4 65.6 ± 8.2 76.7 ± 6.3 70.6 ± 2.7 75.8 ± 3.9
Even with the image resolution of 4 mm × 4 mm × 4 mm,
he MCENN model provides the classification comparable to that
btained from images of 1 mm × 1 mm × 1 mm. This result
emonstrates that the MCENN model may not be sensitive to
mage resolution. It suggests that the MCENN model may have
reat potential to be adopted with fast image acquisition in the
linic.
This study has some limitations that warrant consideration.

he MCENN model achieves good classification results based
n the ADNI dataset. Nevertheless, the numbers of MCI and
D patients in the OASIS-3 and clinical sample are small. More
xperiments with the large number of samples may need for
he further investigation of the MCENN robustness. Moreover,
ncorporating prior knowledge on brain regions related to ADmay
ncrease the performance of the MCENN model. But, the cost of
ncorporating prior knowledge on brain anatomy related to AD
equires intensive image processing (e.g., segmentation, image
egistration), which may not be suitable in clinical setting. Further
nvestigation on incorporating prior knowledge and achieving fast
omputation is needed.

. Conclusion

This study proposes a simple and computationally efficient
eural network, MCENN, for the computer-aided diagnosis of AD.
ur model takes the advantage of the Monte Carlo sampling
o generate possible decisions and incorporates them as a final
ecision. The MCENN model outperforms the existing 2D and 3D
NNs (Wen et al., 2020). The fast computation and insensitivity
o the image resolution are the advantages of the MCENN model
or its potential in clinic use.
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